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ABSTRACT 

Recent progress in artificial intelligence provides researchers with a powerful set of machine learning tools for analyzing 

brain imaging data.   In this work, we explore a variety of classification algorithms and functional network features 

derived from resting-state fMRI data collected from clinical high-risk (prodromal schizophrenia) patients and controls, 

trying to identify features predictive of conversion to psychosis among a subset of CHR patients. While there are many 

existing studies suggesting that functional network features can be highly discriminative of schizophrenia when 

analyzing fMRI of patients suffering from the disease vs controls, few studies attempt to explore a similar approach to 

actual prediction of future psychosis development ahead of time, in the prodromal stage.  Our preliminary results 

demonstrate the  potential of fMRI functional network features to predict the conversion to psychosis in CHR patients.  

However, given the high variance of our results across different classifiers and subsets of data, a more extensive 

empirical investigation is required to reach more robust conclusions.    

Keywords: schizophrenia, functional magnetic resonance imaging (fMRI), functional networks, multivariate predictive 

modeling, classification, predictive features 

1. INTRODUCTION 

One of the central hypothesis in psychiatric research, starting from to the original work by Wernicke1 and Bleuler2, is 

that schizophrenia is associated with somehow disrupted functional connectivity (“dysconnection” hypothesis3). In the 

past decade, exploring functional connectivity disruptions in functional MRI of patients with schizophrenia, as well as 

building multivariate discriminative models based on functional network features is a fast-growing area of research on 

the intersection of neuroimaging and machine learning4-7.  

However, a much less investigated question is whether one can predict conversion to schizophrenia (development of 

psychosis) given the brain imaging data of clinical high-risk (CHR) patients. Developing accurate predictive models 

based on modern machine-learning techniques could provide a valuable tool for identification of highest-risk prodromal 

patients, leading to earlier intervention and potentially better treatment outcomes.  

In this work, we focus on exploring a variety of machine-learning approaches and several types of features extracted 

from resting-state functional MRI data collected from the two groups including healthy controls and CHR patients, 

where a subgroup of these prodromal patients converted to psychosis later in the study. We extracted both region of 

interest (ROI) and voxel-level functional networks and used their features to evaluate several types of predictive models 

in order to discriminate between the converters and the rest of the subjects, including non-converters and controls.  Note 

that this problem is much more challenging than classifying controls vs actual schizophrenic patients with several years 

of disease history and more pronounced connectivity disruptions, as reported in previous studies4-6.  Nevertheless, we 

obtain encouraging preliminary results, both indicating the promise of such discriminative approaches, and the need for 

further exploration of different neuroimaging features, machine-learning techniques, and experimental setups which can 

help to improve psychosis prediction based on brain imaging. 

2. BACKGROUND AND RELATED WORK 

Schizophrenia is a debilitating mental disorder that affect 1-2% of the world population, and approximately 2.2 million 

people in the U.S. alone11. On average, individuals with schizophrenia die at an earlier age than healthy people. Suicide 
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is the single largest contributor to this high mortality rate, which is 10 to 13 percent higher in schizophrenia sufferers as 

compared to the general population. Other contributors to the high mortality rate include schizophrenic patients’ 

increased rates of accidents, diseases, and homelessness12. Historically, schizophrenia has been characterized by 

hallucinations, delusions, and abnormal emotion regulation13. 

More specifically, schizophrenia symptoms include positive symptoms and negative symptoms14. Positive symptoms 

include abnormal behaviors/experiences present in schizophrenic patients but not in healthy individuals, such as 

hallucinations, delusions, and varied motor behavior11, usually caused by general dissociative thinking. Negative 

symptoms are defined as normal functions that are diminished or lost due to schizophrenia. These included alogia, or the 

slowing or lethargic speech, and catatonia, meaning a decline in ability or desire to move. The losses also applied to 

social and emotional affects, such as an observable withdrawal, known as blunted affect. A more specific acute 

emotional loss was also observed, known as anhedonia, which is a significant decrease in a person’s ability to feel 

pleasure or motivation15. The variety of positive and negative symptoms showed that schizophrenic symptoms fall on a 

wide spectrum of cognitive abnormalities and each can be experienced at different levels of intensity, depending on the 

individual11. 

Besides multiple symptoms on the behavioral level, schizophrenics have been shown to have an array of brain structure 

abnormalities. The vast majority of structural abnormalities were observed in the limbic system and a loss of gray matter 

was found to be common among schizophrenic patients11. Furthermore, abnormal functional connectivity in the brain as 

measured by functional MRI have been frequently observed in schizophrenic patients20. This included both global and 

local dysconnectivity in specific areas, such as the frontal and parietal cortices, as well as across entire brain regions16. A 

general dysconnectivity would occur while schizophrenic patients were completing tasks in addition to a constant task-

independent dysconnectivity16.  

Typically, schizophrenia symptoms first manifest themselves in adolescence or early twenties, although there are also 

cases when schizophrenia develops later in life, as well as relatively rare cases of childhood-onset schizophrenia. Often, 

they would progress to a chronic state of cognitive impairment11. It was observed that people who clearly experienced 

sub-psychotic symptoms were at risk for developing schizophrenia or prodromal schizophrenia.  There is a 30% risk for 

transitioning into the full-blown disorder within two years of experiencing sub-psychotic symptoms17. Recently, 

researchers have witnessed an upsurge in research on the potential benefits of early intervention during the prodromal 

stage. The sooner people start the treatment at their first psychotic episode, the better the symptom relief and subsequent 

neural functioning18. 

2.1 Functional MRI and Machine Learning Methods 

The possibility that both structural and functional abnormalities in schizophrenic patients could be better understood 

through functional magnetic resonance imaging (fMRI) has been a topic of interest for many years20. In Functional 

Magnetic Resonance Imaging (fMRI), a MR scanner non-invasively records a subject's blood-oxygenation-level 

dependent (BOLD) signal, known to be correlated with neural activity, as a subject performs a task of interest, or is 

simply resting without any specific task, as in case of resting-state fMRI. Such scans produce a sequence of 3D images, 

where each image typically has on the order of 10,000-100,000 subvolumes, or voxels, and the sequence typically 

contains a few hundreds of time points, or TRs (time repetitions). Standard fMRI analysis approaches, such as the 

General Linear Model (GLM) examine mass-univariate relationships between each voxel and  the stimulus in order to 

build so-called statistical parametric maps that associate each voxel with some statistics that reflects its relationship to 

the stimulus.   

Identifying neuroimaging-based features that can serve as reliable “statistical biomarkers” of mental disorders such as 

schizophrenia remains a challenging open problem. Most prior work on biomarker discovery involves mass-univariate 

hypothesis testing to identify individual features that have significantly different empirical distributions across two 

populations, for example patients with schizophrenia vs. healthy controls. However, we aim at finding biomarkers that 

are capable of predicting the disorder on previously unseen subjects. We adopt multivariate machine-learning 

approaches, as opposed to standard mass-univariate hypothesis testing.   

 Machine learning has been investigated as a promising field in computer science, specifically with respect to 

neurology. Classification algorithms or “classifiers” were used as a type of machine learning program for use with fMRI 

data that would be able to adjust its own programming and produce predicted outcomes. It has been shown that 

classifiers were able to generate different, testable, predictive models.  The extraction of application-specific variables, 

or “features”, was crucial to the development of the most accurate models20.   
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3. MATERIALS AND METHODS 

3.1 Data 

Participants were recruited from the New York State Psychiatric Institute. Resting state fMRI data for n=79 subjects 

were collected from 44 healthy controls and 35 clinical high risk (CHR) patients, out of which 11 later converted to 

psychosis.  

Resting state scans were acquired during a designated 

clinical baseline prior to longitudinal follow-up. 

Participants were matched on age, gender, scanner 

motion, and minority status. Psychosis risk was 

assessed using the Structured Interview for Psychosis-

Risk Syndromes/Scale for Prodromal Symptoms8. 

Clinical outcome was determined by the last follow-

up visit using the Global Functioning: Role scales9. 

For additional details, see Colibazzi et al10. Functional 

and structural MRI scans were acquired using a GE 

Signa 3T scanner. Participants were in a supine 

position and asked to keep their eyes open and were 

allowed to let their minds wander. Total acquisition 

time for the functional resting state scans per run was 

5 minutes and 21 seconds. Resting state scans were 

comprised of echoplanar images (TR=2200ms, 

TE=30ms, flip angle = 90 degrees, slice thickness = 

3.5mm, 34x24x24cm field of view). Participants needed to have at least one functional and one structural scan that 

passed assessment for motion and SNR in order to be included in analysis. Additional details are found in the 

supplemental materials of Colibazzi et al, 2017. Preprocessing was performed using the Nipype software package. 
Motion correction using MCFLIRT was used to account for motion-related noise. Spatial smoothing (5mm), a high-pass 

temporal filter (cutoff-100s), low-pass temporal filter (cutoff = 2.5TR) and registration to the MNI template were 

performed. Images that did not pass thresholds for motion or SNR cutoffs, as well as those with significant dropout, 

were not included in the analysis.   

 

3.2  Feature Extraction and Feature Subset Selection 

 In order to learn a classifier, we first had to extract predictive features, or variables, from the raw fMRI data. 

Herein, we used the voxel degree features extracted from the resting-state functional networks as follows. Pair-wise 

Pearson correlation coefficients were computed among all pairs of time-series (vi(t), vj (t)) where vi(t) corresponds to the 

BOLD signal of i-th voxel. The degree of each voxel was then computed as the total number of voxel’s correlations 

exceeding R > 0.6 in the full-brain correlation matrix. For each subject, and each session, voxel degrees formed a 

separate feature vector, labeled by the type of the subject (binary label denoted whether a subject converted to psychosis 

or not).  We used both voxel-level and ROI-level features (activity averaged over each ROI), including logarithmic 

degrees, interquartile range of logarithmic degrees, interquartile range of ROI partial correlations, and interquartile range 

of ROI regular correlations. We performed feature selection in order to achieve best classification results for each 

classifier, using a simple filter-based approach, which consists in ranking all features using some function that measures 

the relevance of the feature to the class label, and thus the discriminative ability of the feature. Next, a subset of the top-

ranked features is selected. Commonly used ranking criteria include mutual information between feature and class 

variables, correlation between the two, or some other measure of feature’s relevance. Herein, we used as a ranking 

function the p-value resulting from the paired t-test, with the null-hypothesis being that the feature’s values 

corresponding to samples of different classes came from distributions with equal mean.  

3.3 Classifiers 

In order to predict whether a CHR subject will convert to psychosis based on the above features, we trained several 

different classifiers, including SVM, Naive Bayes, Logistic Regression, Decision Tree, Random Forest, SDCA SVM 

Elastic, k-Nearest Neighbors (kNN), and AdaBoost. The classifiers’ error rates were charted for different numbers of top 

Figure 1: Subject types for n=79 dataset. Each circled number 

represents the number of subject type.  
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features. This methodology was aimed at determining which feature files would produce the lowest error rates for 

different classifiers. We also used ‘chance’ classifier as a baseline, where the most common label in the training dataset 

was always used to label the previously unseen test samples. Namely, the error rates for chance level were always equal 

to the percentage of the least common label, as those were the ones that would be guessed incorrectly. A brief 

description of the other classifiers we used is provided below. 

Support Vector Machines (SVM) with linear kernel: a linear classifier which constructs a hyperplane separating the 

examples of two classes, where the hyperplane has the largest margin (distance to the nearest training-data point of any 

class) among all such hyperplanes. 

Naive Bayes:  a probabilistic classifier making a simplifying assumption that all features were independent of each other 

given the class label, and uses  Bayes rule to infer the class given the feature values. In geometric terms, Naive Bayes is 

also  a linear classifier, but unlike SVM, its separating hyperplane is not necessarily  maximizing the margin. Despite its 

simplifying assumption, Naive Bayes has been shown to perform surprisingly well in practice and have advantages of 

being scalable and very easy to learn and apply. 

Logistic regression estimates the probability of a binary response given a set of predictor variables (features). By 

thresholding the output of the logistic regression for a given input sample at 0.5 (i.e., replacing it by 1 if logistic 

regression predicts above the threshold, and by 0 otherwise), a classification model is obtained. A standard approach to 

handling the data with the number of dimensions (features) significantly exceeding the number of samples is to add 

some type of regularization (i.e. constraints) to the model. A common type of regularization, also used herein, was the 

l2-norm penalty on the vector of the model’s parameters. 

Decision Tree classifier learns a predictive model in the form of a tree structure, where leaves represent class labels and 

nodes correspond to conditions on features of a given sample; thus, tree branches represented conjunctions of such 

conditions that lead to class labels/leaves. The predicted outcome is the class to which the data belongs. 

Random Forest is an ensemble method consisting of a group of independent random decision trees. Each tree is grown 

using a randomly selected subset of features. For each input, outputs of all trees are computed, and the class with 

majority of votes is selected. The number of estimators for the random forest was varied from 5 to 20. 

SDCA SVM Elastic: This was a form of a regularization model, used to prevent overfitting and maximize 

interpretability. 

Nearest Neighbors (kNN): the k-Nearest Neighbors classification algorithm (kNN) assigns a class label to a given 

(unlabeled) test sample via majority vote of its neighbors, i.e. the sample is assigned to a class most common among the 

sample’s k nearest neighbors. 

AdaBoost (short for Adaptive boosting) is a classifier that combines multiple different machine learning algorithms by 

averaging their outputs. Each algorithm used only has to be better than chance level, and then AdaBoost would be 

expected to have good performance. One drawback of the classifier was that it was sensitive to noisy data. 

Many of these classification models were based off of algorithms that are included in Python’s machine learning library, 

Scikit Learn. 

The data were comprised of multiple subjects labelled patients or controls (typically 1 for control and -1 for patient). 

Different variables were measured for each subject, including BOLD signals and symptom severity. The program 

extracted useful features that could build a 

discriminative model. By properly selecting relevant 

features, models were easier to interpret, program 

run times were shortened, and other benefits were 

reached19.  

 The feature file produced was then split into 

“folds,” or subsets. The script ran, leaving 1-fold out 

at a time as testing data. These data were left out of 

the model to check for accuracy. The rest of the data, 

called training data, were then fit to a graphical 

model. When the script was done running, average 

Figure 2: 4-Fold Classification Diagram. For each iteration (run of 

classification algorithm to build a model), a different subset of the 

data is used as testing data, and the rest are training data. The final 

model incorporates all iterations into one. 
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error rates were plotted based on how well the model predicted which class the test data belonged to19.  

4. RESULTS 

 
Initially, for n=79 dataset with 11 converters vs. all others (68, both healthy controls and non-converters), each classifier 

had low error rates. However, chance level is 11/79, or about 14%, so the accuracy of the classifiers was difficult to 

determine with such a low chance level; best results of the classifiers were only meeting the chance level. However, in  

the next run, we explored an even split of 11 converters and 11 completely healthy controls. Prodromal non-converters 

were excluded from this analysis. Here, chance level would be at 50%. Multiple classifiers performed clearly above the 

chance level. Though this undermined the large sample size provided, the smaller subset offered a more class-balanced 

view. AdaBoost Classifier had an error rate as low as 12%, which was substantially lower than the (theoretical) 50% 

chance level for the interquartile range of ROI partial correlation. AdaBoost also demonstrated consistency in low error 

rates over different amounts of top variables. Other classifiers like SDCA SVM Elastic and Linear SVM had notable 

accuracies as well, ranging from an 18-20% error rate. We show in Figure 1 the results for two types of network 

features, at ROI and at the voxel level. 

 

  

  

Conclusion 

Review 

 This research sought to determine 

 

 

 

 

Figure 3: Classification error for balanced subset of data, as a function of different subsets of top-ranked features (x-

axis). Extracted features: (a)  interquartile range of ROI partial correlations,(b) smooth logarithmic degrees. Chance 

level: 0.5. 

 Overall, the results are preliminary but promising as they demonstrate  a potential for functional network features to 

predict the conversion to psychosis in CHR patients, at least for some classifiers and data subsets.  However, given the 

high variance of our results across different classifiers and subsets of data, a more extensive empirical investigation is 

required to reach more robust conclusions.   
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